Biomechanical Evaluation of a Novel Apatite-Wollastonite Ceramic Cage Design for Lumbar Interbody Fusion: A Finite Element Model Study

نویسندگان

  • Celal Bozkurt
  • Alpaslan Şenköylü
  • Erdem Aktaş
  • Baran Sarıkaya
  • Serkan Sipahioğlu
  • Rıza Gürbüz
  • Muharrem Timuçin
چکیده

Objectives Cage design and material properties play a crucial role in the long-term results, since interbody fusions using intervertebral cages have become one of the basic procedures in spinal surgery. Our aim is to design a novel Apatite-Wollastonite interbody fusion cage and evaluate its biomechanical behavior in silico in a segmental spinal model. Materials and Methods Mechanical properties for the Apatite-Wollastonite bioceramic cages were obtained by fitting finite element results to the experimental compression behavior of a cage prototype. The prototype was made from hydroxyapatite, pseudowollastonite, and frit by sintering. The elastic modulus of the material was found to be 32 GPa. Three intact lumbar vertebral segments were modelled with the ANSYS 12.0.1 software and this model was modified to simulate a Posterior Lumbar Interbody Fusion. Four cage designs in different geometries were analyzed in silico under axial loading, flexion, extension, and lateral bending. Results The K2 design had the best overall biomechanical performance for the loads considered. Maximum cage stress recorded was 36.7 MPa in compression after a flexion load, which was within the biomechanical limits of the cage. Conclusion Biomechanical analyses suggest that K2 bioceramic cage is an optimal design and reveals essential material properties for a stable interbody fusion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biomechanical analysis of various footprints of transforaminal lumbar interbody fusion devices.

STUDY DESIGN A biomechanical finite element modeling study of the human lumbar spine. OBJECTIVE To evaluate the effects of a transforaminal interbody device's footprint on lumbar spine biomechanics to further examine the potential subtle biomechanical differences not captured in previous studies. SUMMARY OF BACKGROUND DATA In recent years, the evolution of interbody fusion devices has provi...

متن کامل

Biomechanical evaluation of an expandable cage in single-segment posterior lumbar interbody fusion.

STUDY DESIGN Controlled laboratory study. OBJECTIVE To evaluate the biomechanical characteristics of a new expandable interbody cage in single-segment posterior lumbar interbody fusion (PLIF) using cadaveric lumbar spines. SUMMARY OF BACKGROUND DATA One of the popular methods of treating lumbar spine pathologies involves a posterior lumbar interbody fusion using bilateral interbody nonexpan...

متن کامل

Comparison of posterior versus transforaminal lumbar interbody fusion using finite element analysis

Objectives: To compare the influence of posterior lumbar interbody fusion (PLIF) and transforaminal lumbar interbody fusion (TLIF) on adjacent segment degeneration. Methods: The study was carried out in the Traumatology and Orthopedics Laboratory, Department of Traditional Chinese Medicine, Medical School, Jinan University, Guangzhou, China, between December 2013 and November 2014. A normal, he...

متن کامل

A Biomechanical Comparison of Shape Design and Positioning of Transforaminal Lumbar Interbody Fusion Cages

STUDY DESIGN Cadaveric biomechanical analysis. OBJECTIVE The aim of this study was to compare three interbody cage shapes and their position within the interbody space with regards to construct stability for transforaminal lumbar interbody fusion. METHODS Twenty L2-L3 and L4-L5 lumbar motion segments from fresh cadavers were potted in polymethyl methacrylate and subjected to testing with a ...

متن کامل

Biomechanical comparison of a new stand-alone anterior lumbar interbody fusion cage with established fixation techniques – a three-dimensional finite element analysis

BACKGROUND Initial promise of a stand-alone interbody fusion cage to treat chronic back pain and restore disc height has not been realized. In some instances, a posterior spinal fixation has been used to enhance stability and increase fusion rate. In this manuscript, a new stand-alone cage is compared with conventional fixation methods based on the finite element analysis, with a focus on inves...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2018  شماره 

صفحات  -

تاریخ انتشار 2018